2.4.5 Covariance

- Measures the relationship between two random variables
- Random variables Y and X have a joint probability function
- Joint prob. func.: (i) lists all possible combos of Y and X; (ii) assign a probability to each combination
- A useful summary of a joint probability function is the covariance
- The covariance between Y and X is the expected difference of Y from its mean, multiplied by the expected difference of X from its mean
- Covariance tells us something about how two variables are related, or how they move together
- Tells us about the direction and strength of the relationship between two variables

$$
\begin{equation*}
\operatorname{Cov}(Y, X)=\mathrm{E}\left[\left(Y-\mu_{Y}\right)\left(X-\mu_{X}\right)\right] \tag{2.8}
\end{equation*}
$$

The covariance between Y and X is often denoted as $\sigma_{Y X}$. Note the following properties of $\sigma_{Y X}$:

- $\sigma_{Y X}$ is a measure of the linear relationship between Y and X. Nonlinear relationships will be discussed later.
- $\sigma_{Y X}=0$ means that Y and X are linearly independent.
- If Y and X are independent (neither variable causes the other), then $\sigma_{Y X}=0$. The converse is not necessarily true (because of non-linear relationships).
- The $\operatorname{Cov}(Y, Y)$ is the $\operatorname{Var}(Y)$.
- A positive covariance means that the two variables tend to differ from their mean in the same direction.
- A negative covariance means that the two variables tend to differ from their mean in the opposite direction.

2.4.6 Correlation

- Correlation usually denoted by ρ
- Similar to covariance, but is easier to interpret

$$
\begin{equation*}
\rho_{Y X}=\frac{\operatorname{Cov}(Y, X)}{\sqrt{\operatorname{Var}(Y) \operatorname{Var}(X)}}=\frac{\sigma_{Y X}}{\sigma_{Y} \sigma_{X}} \tag{2.9}
\end{equation*}
$$

The difficulty in interpreting the value of covariance is because $-\infty<$ $\sigma_{Y X}<\infty$. Correlation transforms covariance so that it is bound between -1 and 1. That is, $-1 \leq \rho_{Y X} \leq 1$.

- $\rho_{Y X}=1$ means perfect positive linear association between Y and X.
- $\rho_{Y X}=-1$ means perfect negative linear association between Y and X.
- $\rho_{Y X}=0$ means no linear association between Y and X (linear independence).

2.4.7 Conditional distribution

- Joint distribution - 2 RVs
- Conditional distribution - fix (condition on) one of those RVs
- Condition expectation - the mean of one RV after the other RV has been "fixed"

Let Y be a discrete random variable. Then, the conditional mean of Y given some value for X is

$$
\begin{equation*}
\mathrm{E}(Y \mid X=x)=\sum_{i=1}^{K}\left(p_{i} \mid X=x\right) Y_{i} \tag{2.10}
\end{equation*}
$$

- If the two RVs are independent, the conditional distribution is the same as the marginal distribution

Example: Blizzard and cancelled midterm

Suppose that you have a midterm tomorrow, but there is a possibility of a blizzard. You are wondering if the midterm might be cancelled.

Table 2.1: Joint distribution for snow and a canceled midterm		
	Midterm $(Y=1)$	No Midterm $(Y=0)$
Blizzard $(X=1)$	0.05	0.20
No Blizzard $(X=0)$	0.72	0.03

- What are the marginal probability distributions?
- What is $\mathrm{E}[Y]$? What is $\mathrm{E}[Y \mid X=1]$?
- What is the covariance and correlation between X and Y ?
- More exercises in the "Review Questions"

2.5 Some special probability functions

2.5.1 The normal distribution

- Common because of the "central limit theorem" (in a few slides)

$$
\begin{equation*}
f\left(y \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp -\frac{(y-\mu)^{2}}{2 \sigma^{2}} \tag{2.3}
\end{equation*}
$$

- Mean of y is μ
- Variance of y is σ^{2}

2.5.2 The standard normal distribution

- Special case of a normal distribution, where $\mu=0$ and $\sigma^{2}=1$
- Equation 2.3 becomes:
$f(y)=\frac{1}{\sqrt{2 \pi}} \exp \frac{-y^{2}}{2}$
- Any normal random variable can be "standardized"
- How to standardize?
- Standardizing has long been used in hypothesis testing (as we shall see)

Figure 2.3: Probability function for a standard normal variable, $p_{y<-2}$ in gray

2.5.3 The central limit theorem

- There are hundreds of different probability functions
- Examples: Poisson, Binomial, Generalized Pareto, Nakagami, Uniform
- So why is the normal distribution so important? Why are so many RVs normal?
- Answer: CLT
- CLT (loosely speaking) - if we add up enough RVs, the resulting sum tends to be normal

Exercise: draw the probability function for one die roll, then for the sum of two dice.

Figure 2.1: Probability function for the result of a die roll

Figure 2.4: Probability function for the sum of two dice

Figure 2.5: Probability function for three dice, and normal distribution

Figure 2.6: Probability function for eight dice, and normal distribution

2.5.4 The chi-square distribution

- Add to a normal RV - still normal
- Multiply a normal RV - still normal
- Square a normal RV - now it is chi-square distributed
- We will use the chi-square distribution for the F-test in a later chapter

